

© 2003-2004 Oracle Corporation All rights reserved.

1,184,893.38 tpmC @ \$5.52/tpmC TOP Overall TPC-C Result!

More details at: http://www.tpc.org/

ORACLE

Source - Transaction Processing Council, as of January 14, 2004: Oracle10g Database with Real Application Clusters on Red Hat © 2003-2004 Oracle Corporation All rights integers/edux AS 3, 16 HP Integrity rx5670, with 64 Intel Itanium 2 1.5 GHz processors, 1,184,893.38 tpmC, so (original publication date, 12-8-03) available 04/30/04

WARNING

- We are not responsible for typographical errors, before using new commands please check:
 - Man pages:
 - \square \$ man <command>
 - □ \$ man -k <keyword> search for command
 - Info pages (more detailed, interactive)
 - \square \$ info <command>
 - Command help, typically:

Tuning Philosophy

- [¤] Philosophies differ
 - Tuning for new or existing database
 - Tend to start with things we know
 - Perception of a problem may sway your philosophy
- Here's mine...
 - Go for the best bang for your buck
 - α Translation: Go after the big things first

Choosing a Kernel

^C Choose the appropriate kernel for your machine:

- More than 4 GB of physical memory
 ^A RH: Use the enterprise kernel
 - $^{ imes}$ UL: Use the 64GB kernel
- More than one CPU
 - $^{\mbox{\scriptsize ϖ}}$ RH/UL: Use the SMP enabled kernel
- Otherwise use the uniprocessor kernel
- ^{II} Use the latest Update or ServPack from RH/UL
 - RHEL3 Update 3 has an I/O issue bugzilla 131391

Memory Configurations (IA-32)

[¤] "smp": 2-level page tables

- HW can only address 4GB of RAM
- 4kB pages and 4MB "large" pages
- [©] "enterprise": 3-level page tables
 - HW can address up to 64GB of RAM
 - 4kB pages and 2MB "large" pages
 - RHEL2.1: max 16GB RAM supported
 - SLES8, RHEL3: 64GB officially supported

Firmware / Drivers

- Verify and upgrade all needed drivers & Firmware prior to major testing:
 - BIOS for computer
 - Firmware for on board IO/Network card
 - Firmware for SAN/NAS storage
 - Linux IO/Network Controller driver

Red Hat EL 2.1 Install Notes

Install development packages

 Required for linking during Oracle install

 Use gcc-2.96 for Oracle 9i related relinking

UnitedLinux/SuSE Install Notes

- Install from UL CD #1 to get generic UL install
- Install from vendor's CD to get vendor "flavor"
- ^I Install the orarun package to simplify setup
 - Will check for package dependencies for Oracle
 - Create Oracle user and groups
 - Facilitate automatic startup/shutdown of all services
- ^C Use gcc-2.95 for Oracle 9i related relinking

Choosing a Shell – Your Choice

^C Your working shell is really a matter of choice:

- Oracle scripts use Bourne (sh) & C (csh) shells
- Most scripts specify the shell on first line as a comment

¤#!/bin/sh

- ^{II} To show the currently used shell
 - **#** echo \$0

^{IC} To change the default shell: chsh or usermod

RPM Package Manager

- Manage software packages
 - Install, upgrade, remove, verify, query, build
- Package files referred to as RPMs
 - Distributed by the vendor
 - Include files to be installed plus some install scripts
- Source RPMs contain the source code
 - e.g., kernel-2.4.9-e.24.src.rpm
- ^{IX} Binary RPMs contain the pre-built binaries
 - e.g., kernel-2.4.9-e.24.i686.rpm
 - Choose the highest architecture the machine can use
 ^X e.g., i686, i586, i486, i386 (uname -m)

RPM Queries

- ^{IC} To show the names of all packages installed:
 - rpm -qa
- [¤] To list the files in an RPM file:
 - rpm -qlp <pkg_name>.rpm
- ^{IC} To list the files in an installed package:
 - rpm -ql <pkg_name>
- ^C To determine which package installed a file:
 - rpm -q --whatprovides <filename>

RPM Actions

- [©] Only root can install/upgrade/remove RPMs
- ^C Use --test option to see if action will work
 - Checks if all dependencies will be satisfied
 - If test succeeds, remove --test to really do it
- Specify multiple packages on one command line to satisfy circular dependencies
 - e.g., A.rpm requires B.rpm, B.rpm requires A.rpm
 - rpm -i A.rpm B.rpm

RPM Actions (cont'd)

- rpm -e <pkg_name>

Linux Updates

- Apply the recommended updates by the distribution vendor:
 - Most vendors provide automatic updates
 [¤] Red Hat Network supplies updates automatically
 ⁻up2date
 - $^{\mbox{$\Xi$}}$ SuSE uses
 - -YaST (Yet Another Setup Tool)
 - -YOU (YaST Online Update)

Kernel "sysctl" Parameters

- ^C Control dynamic kernel configuration/tuning
 - Most parameters can be changed on the fly!
- ^C Can be set multiple ways:
 - In /etc/sysctl.conf: (Recommended)
 ^{\overline{1}{10}\$} fs.aio-max-size=1048576
 - In /etc/rc.local (RH) or /etc/boot.local (UL):
 ^{\(\alpha\)} echo 1048576 > /proc/sys/fs/aio-max-size
 - Using sysctl:

^{II} sysctl -w fs.aio-max-size=1048576

^{IC} Will be lost on reboot if not in /etc/sysctl.conf!

Kernel "sysctl" Parameters

- ^{ID} aio-max-size = 1048576 (1MB)
- ^{II} aio-max-nr = 65536 (Leave default)
- ^{IC} shmmax = 3294967296 (3GB)
- shmall = 4194303 (4GB -1)
- \square If using VLM: shm-use-bigpages = 2

Boot Loaders

- ^C Grub (recommended)
 - New and improved boot loader
 - Configured via /boot/grub/menu.lst
 - Not necessary to rerun after config changes
- × LILO
 - Original Linux boot loader
 - Configured via /etc/lilo.conf
 - Must run /sbin/lilo after any change to lilo.conf or binary images (/boot/*)

Grub Configuration

default=0

timeout=10

splashimage=(hd0,0)/boot/grub/splash.xpm.gz

title Red Hat Ent Linux AS (2.4.21-9.EL)

root (hd0,0)

kernel /boot/vmlinuz-2.4.21-9.EL root=LABEL=/

initrd /boot/initrd-2.4.21-9.EL.img

Loadable Kernel Modules

- ^{II} To install a module, two methods:
 - insmod <module name>.o
 - modprobe <module name>
- ^D To list the installed modules:
 - lsmod
 - cat /proc/modules
- ^{II} To remove a module:
 - rmmod <module name>
- ^D Do NOT recompile a module into kernel

Checking for a Tainted Kernel

Use the /sbin/lsmod command to see whether the kernel is tainted:

Module	Size	Used by Not.
tainted		
nfs	87936	0 (autoclean)
lockd	60224	0 (autoclean) [nfs]
sunrpc	79952	0 (autoclean) [nfs lockd]
iptable_filter	2912	0 (autoclean) (unused)
ip_tables	14080	1 [iptable_filter]
ad1848	23968	0 [cs4232]
ext3	70240	5

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

Creating Partitions

- ^{IC} Linux fdisk can create partitions of any type
 - Partition type 83 "Linux"
 - $^{\square}$ Linux –specific filesystems
 - $^{\square}$ Oracle Cluster Filesystem (OCFS)
 - $^{\square}$ Raw devices
 - Partition type 82 "Linux swap"
- [¤] At most 4 primary partitions
- Additional partitions must be logical partitions inside an extended partition

Listing Partitions

# cat	/proc/partitions		
major	minor	<pre>#blocks name rio rmerge</pre>	
8	0	8281507 sda	
8	1	8281476 sda1	
8	16	4192965 sdb	
8	17	2048256 sdb1	
8	18	2048287 sdb2	
8	32	9430155 sdc	
8	33	9430123 sdc1	
8	48	9430155 sdd	
8	49	4715046 sdd1	
8	50	4715077 sdd2	
22	0	252290 hdc	

• • •

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

Creating Filesystems

- Create partitions of type "Linux" (type id=83)
- ^C Use /sbin/mkfs to format the partition
 - Must give -t to specify filesystem type
 - OR, use /sbin/mkfs.<fstype> instead
- [¤] Example:
 - **Ext2:** # mkfs -t ext2 /dev/sdb1
 - Ext3: # mkfs -j /dev/sdb1

Mounting Filesystems

- For one-time or ad hoc mounts, mount manually
 - Use /bin/mount to mount, umount to un-mount For frequently used filesystems, use /etc/fstab
 - Entries can be mounted automatically or not
- Unmounting a filesystem flushes and releases all buffers for it from the pagecache

One-time Mounts

- Most filesystem types recognized automatically
 - Exception: OCFS
 - Use -t option to force correct filesystem type
- [¤] Example:
 - /bin/mount -t ocfs /dev/sdb1 /oracle
- [©] where:
 - /dev/sdb1 is the device name of the partition
 - /oracle is the mountpoint where it will be mounted

Preconfigured Mounts

- ^{II} Put commonly used entries in /etc/fstab
- ^Z Example:
 - /dev/sdb1 /oracle ext3 defaults 1 2
- [¤] To mount:
 - mount /oracle
 - mount /dev/sdb1
- Use noauto mount option to prevent an entry from being mounted automatically at boot time
 - e.g., /mnt/cdrom, /mnt/floppy

I/O Modes

- Disk I/O can be performed in several different modes
 - Asynchronous vs. synchronous
 - Direct vs. buffered

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

ext2 / ext3 / reiserfs

- ext2 used to be the most common Linux filesystem
- ext3 is based on ext2
 - Same on-disk structure
 - ext2 can be converted to ext3
 - ext3 can be mounted as an ext2 file system
- reiserfs/ext3 are both journaling filesystems
 - Preserves data integrity better than ext2
 - Faster and safer fsck after system crash
- Mount with noatime option.

Oracle Clustered Filesystem

- OCFS delivers raw-like performance with tremendous advantages in management and usability
 - All database related files reside on a clustered filesystem
 - Visible to all nodes
- ^D Open source project sponsored by Oracle
- Supports asynchronous I/O as of v1.0.9
- Free to use
- ^{ID} Get fix for bug #2883583
 - Allows cp, dd & tar of open database files needed for hot backup

Raw Devices

- ^I I/O directly to partitions instead of a filesystem
- [¤] Eliminates copying to/from filesystem cache
- ^{IC} Each raw device is a character device
 - Character device major number 162
- Requires more experienced administration

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

Raw Devices (cont'd.)

- Devices will be either in /dev or /dev/raw
- ^D Device names are raw1 255 by convention
 - May need to manually create raw129 raw255: ^{\alpha} e.g., mknod /dev/raw/raw129 c 162 129
- ^D Minor #0 is special and can't be used for I/O
 - Implies a limit of 255 raw devices
- DB files should be symlinks to /dev/raw/raw*

Creating Raw Devices

- Create partitions of type "Linux" (type id=83)
- [©] Use /sbin/raw to bind raw device with a partition
- Examples:
 - # /sbin/raw /dev/raw/raw1 /dev/sdc1
 - # /sbin/raw /dev/raw/raw1 8 33
- Give oracle user ownership of raw device:
 - # chown oracle:dba /dev/raw/raw1
- Bindings are not persistent across reboot
 - RedHat: /etc/sysconfig/rawdevices
 - SuSE:/etc/raw

Asynchronous I/O

- Oracle10g & 9i are shipped with asynchronous I/O support disabled (not using libaio)
- It's easy to enable (re-link Oracle) and the benefits are immediate on intensive write databases
- ^{II} 9i see bug 3016968, 10g see bug 3438751
- ^{II} See Note: 225751.1 on enabling

Asynchronous I/O - Enabling

- \$ make -f ins_rdbms.mk async_on ioracle
 - disk_asynch_io=true (the default)
 - filesystemio_options=asynch set this as well
 if datafiles are on a filesystem (e.g. ext3 or OCFS)
- Using multiple DBWRs with async I/O is usually better than using I/O slaves

Asynchronous I/O - Using

- 2 DBWRs appears to be a good default for a large buffer cache
 - db_writer_processes=2
 - No need for I/O slaves (Emulate A-I/O)

 $^{\square}$ #dbwr io slaves=20

- ^I If large read sizes occur, set:
 - fs.aio-max-size to the largest read size (default is 128KB)
 - Oracle maximum I/O size is 1MB

Multiple DBWR Processes

- ^{DB_WRITER_PROCESSES (new)}
 - Set to no more than CPU_COUNT, up to 20
 - Multiple DBWR processes write from LRU to disk
 - These processes can use asynchronous I/O
 - These processes are best used in OLTP environments

DB Writer Slaves

DBWR_IO_SLAVES (old)

- Used to simulate asynchronous I/O
- One DBWR, multiple writers to disk

/proc Filesystem

- /proc is a virtual file system
- Provides an instantaneous view of the operation of the system
 - /proc/meminfo, /proc/mounts, /proc/partitions
 - Can be viewed with cat, more, less
- ^D Can be used to configure kernel parameters
 - Settable parameters are below /proc/sys
 - Can be set with echo or via sysctl

System V Shared Memory

[¤] Used by Oracle for the SGA

- May have multiple segments if shmmax is low
- Normally all segments deleted at shutdown
- If instance crashes, segments may hang around
- ^{II} To view existing segments:
 - /usr/bin/ipcs
- ^{II} To manually remove a segment:
 - /usr/bin/ipcrm shm <shm_id>

SGA Larger than 1.7 GB (IA-32)

^{II} On Red Hat 2.1 & SuSE SLES8 & SLES9

- Due to default layout of a process' address space
 Oracle can attain an SGA of only about 1.7GB
- It's possible to rearrange user-mode address space to accommodate a larger SGA of about 2.7GB
 - Metalink Note 200266.1
- ^{II} RHEL3 allows an SGA size of about 3.6GB
 - No special modifications needed

SGA Larger than 1.7 GB (cont'd) **After Relink**

Default

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

SGA Larger Than 1.7 GB (cont'd)

- These steps are required for implementing an SGA between 1.7 GB and 2.7 GB
 - 1. Modify shmmax
 - 2. Modify a shell for starting the database instance by lowering mapped_base
 - 3. Relocate the SGA:
 - a. Modify ksms.s
 - b. Relink the database executables

Modifying shmmax

- Set the shmmax parameter to hold the entire SGA in a single shared memory segment
 - This can be done for real memory up to 4 GB
 - For this boot:

echo 300000000 > /proc/sys/kernel/shmmax

- For future boot ups change sysctl.conf:

kernel.shmmax = 300000000

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

Lowering the mapped_base

- The mapped_base parameter is set at the process level, and can only be set by root
 - Start a shell as the oracle user
 - $^{\square}$ Find the oracle user shell process ID:

\$ echo \$\$

Start a shell as the root user
 ^X Set the mapped_base for the oracle user shell:

echo 268435456 > /proc/<userpid>/mapped_base

- In the oracle user's shell:
 - $^{\mbox{\scriptsize ϖ}}$ Start the database
 - $^{\mbox{\scriptsize ϖ}}$ Start the listener

Relocating the SGA

Execute the following commands as the Oracle software owner:

```
$ cd $ORACLE_HOME/lib
$ cp -a libserver9.a libserver9.a.BCK.orig
$ cd $ORACLE_HOME/rdbms/lib
$ cp ksms.s ksms.s_orig /* if ksms.s exists,
back it up first.*/
$ genksms -s 0x15000000 > ksms.s
$ make -f ins_rdbms.mk ksms.o
$ make -f ins_rdbms.mk ioracle
```

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

SGA Larger than 1.7 GB (cont'd)

- Once the Oracle executable has been relinked with a lowered SGA base, all connected users must have a lowered mapped_base
 - Listener takes care of remote connections
- See Metalink Note 200266.1 for details on what can go wrong and for a sample program that can automatically lower mapped_base
 - Lowered base address propagates to child processes
 - Start the listener from a lowered base address shell

Larger Buffer Cache (IA-32)

- Oracle has the capability to use an extended buffer cache greater than 4GB
- Using Indirect Data Buffers has some overhead, in most cases the benefit is worth it
 - Reduced I/O rate since more data is cached in memory
- Additional things to note:
 - Requires enterprise kernel
 - Dynamic SGA parameters cannot be used in this case
 - Enable bigpages for further performance boost

Larger Buffer Cache (cont'd)

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

Larger Buffer Cache (cont'd)

- Steps to enable Indirect Data Buffers (from Oracle9i Administrators Reference, Rel 2 for Linux):
 - 1. Set shmmax to hold the entire SGA
 - 2. Enable shared memory filesystem:
 - ¤ # mount -t shm -o size=8g shmfs /dev/shm
 - ^{III} In fstab: none /dev/shm tmpfs size=8g 0 0
 - 3. Set the initialization parameters:
 - ^X use_indirect_data_buffers=true
 - use only db_block_buffers and db_block_size (cannot use db_cache_size)

Bigpages (IA-32)

- ^D Separate memory pool using large hw pages
- ^D Non-swappable
- Must be set aside at boot time
 - Boot with kernel parameter "bigpages=8192MB"

Use Workaround in bug 3080838

To prevent Kernel panic in sshd_config set:
 ^{\overline{2}} UsePrivilegeSeparation no -OR ^{\overline{2}} Compression no (preferred)

Bigpages (cont'd)

- To enable/reserve large contiguous pages on next reboot, add to Linux boot parameter:
 - **Grub**: bigpages=<size>MB
 - Lilo.conf: append="bigpages=<size>MB"
- To configure Oracle to allocate the SGA from the bigpages pool set in /etc/sysctl.conf:
 - Kernel.shm-use-bigpages=2
- Look in /proc/meminfo at BigPagesFree to see the size of the bigpage pool

Bigpages (cont'd)

- This should be used all the time once you know Oracle's memory requirements
- The bigpage pool is only available for shared memory, so the system may swap if there is not enough memory left to satisfy per-user memory needs
- The bigpage pool needs to be slightly larger than your SGA or startup will fail

Parameter: shm-use-bigpages

Allowed values:

- 0: don't use bigpages pool for shared memory
- 1: use bigpages pool for SysV shared memory
- 2: use bigpages pool for SysV and shmfs
- Default value: 0

Use Workaround in bug 3080838

To prevent Kernel panic in sshd_config set:
 [¤] UsePrivilegeSeparation no -OR [¤] Compresson no (preferred)

Hugetlbfs (RHEL3&4, SLES9)

- Similar to bigpages but, configured at runtime, no need to reboot:
 - Shutdown instance (free memory)
 - Ask for 6000MB:
 - [¤] By MB: echo 6000 > /proc/sys/vm/hugetlb_pool
 - ¤ # Pages: echo 1500 > /proc/sys/vm/nr_hugepages
 - [¤] **Page size**: cat /proc/meminfo|grep Hugepagesize
 - cat /proc/meminfo
 - $^{\square}$ Verify you got 6000MB, if not might need to reboot
 - Startup instance
 - $^{\square}$ Verify usage in /proc/meminfo

Network configurations

- Increase SDU/TDU in SQL*Net Note: 44694.1
 - Both in this the second sec
 - Will reduce (V\$SYSTEM_EVENT)

 $^{\square}$ SQL*Net more data to client

 $^{\square}$ SQL*Net more data from client

tcp.nodelay in protocol.ora, Note: 1005123.6

- tcp.nodelay=yes
- Consume more bandwidth but more responsive

Process Specific

^D Specific process is a suspect:

- System call trace:
 - [¤] strace -p <pid>
- Library call trace:
 - [¤] ltrace -p <pid>
- Detailed process statistics:

```
¤ ps -o <options>
¤ Try: ps -e -o
pid,ppid,pcpu,rss,vsz,pri,wchan,cmd
```

- [×] Who has my file open?
 - lsof [-p <pid]</pre>
- For Process Tree, use pstree -p
- $^{\circ}$ Not seeing a process, it's probably a thread, try: ps -efm

Installing and Configuring Statspack

- Install Statspack
 - \$ORACLE_HOME/rdbms/admin/spcreate.sql
- Collect statistics:
 - Execute statspack.snap;
- [¤] Produce a report
 - @spreport.sql

Collect timing information, set
STATISTICS_LEVEL = TYPICAL.

Correlating Database and OS Measurements

- Correlate I/O timing reported by Oracle to I/O timing reported by OS utilities & Hardware
 - For example: Database says I/O takes 60ms but hardware says 10ms
- OS and database statistics should be collected at the same time periods to have a meaningful comparison
 - Run sar and Statspack continuously

DB Tuning in Oracle 10g

- ^C Automatic Workload Repository (AWR)

 - Built into the Oracle Kernel (no SQL used)
 - HTML based statspack like reports possible
 ^{III} Obsoletes statspack
- Automatic Database Diagnostic Monitor (ADDM)
 - Produce actual implementation suggestions based on AWR snapshots

Summary: Linux Monitoring Tools

Overall tools

- sar , vmstat
- CPU
 - /proc/cpuinfo , mpstat , top
- ^{II} Memory
 - /proc/meminfo , /proc/slabinfo
- Disk I/O
 - iostat, sar
- [©] Network
 - iptraf, netstat, mii-tool
- Individual process debugging
 - strace , ltrace, lsof

ORACLE

© 2003-2004 Oracle Corporation All rights reserved.

Linux Tuning Summary

- ^C Take advantage of easy Linux improvements:
 - IA-32:
 - $^{\mbox{$\Xi$}}$ Increase user address space to fit a larger SGA
 - $^{\mbox{\scriptsize ϖ}}$ Use Large Buffer Cache when needed and possible
 - Use bigpages/hugetlbfs to map SGA more efficiently
 - Use Asynchronous I/O
- ^D Maintain up to date Linux environment

QUESTIONS ANSWERS

© 2003-2004 Oracle Corporation All rights reserved.

